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Abstract: This research aims to highlight the role of mathematical models in understanding complex biological 

processes in the nervous system and cardiac systems. Neuroscience is an Interdisciplinary scientific field that relies 

on mathematics, engineering, and physics to analyze how the brain processes information and its impact on behavior 

and cognition. The Hodgkin-Huxley differential equation is one of the most prominent mathematical models 

describing the dynamics of membrane potential resulting from ion movement in neurons. 

This equation has been refined to enhance biological realism by incorporating additional currents, such as calcium 

current, the sodium-potassium pump, stochastic noise, and synaptic currents. These improvements have contributed 

to a more accurate representation of neuronal membrane dynamics and membrane potential stability, providing 

deeper insights into neural behavior in biological systems and related diseases. 

In addition to the nervous system, mathematical models are used to study cardiac systems, contributing to the 

development of therapeutic strategies for neurological and cardiac diseases. Differential equations accurately 

represent the electrical activity of neuronal and cardiac cells, facilitating the analysis of environmental factors and 

drug effects. 

This research demonstrates how the integration of mathematical models with biology can enhance scientific 

understanding and offer practical solutions in areas such as drug development and precise analysis of their effects. 

The study underscores the importance of mathematics as a powerful tool for exploring neural signaling and 

comprehensively analyzing biological systems. 
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1.   INTRODUCTION 

Neuroscience is a prominent scientific discipline dedicated to studying the structure, functions, and interactions within the 

nervous system. It intersects with fields such as mathematics, engineering, and physics to explore how information is 

processed in the brain and nerves and how these processes influence behavior and cognition [1]. Mathematical modeling 

plays a crucial role in simplifying and interpreting the complex biological processes occurring in neural cells. In particular, 

differential equations serve as fundamental tools for describing the transmission of electrical signals through nerves, a 

phenomenon known as neural signal transmission [2]. These signals involve changes in electrical potential resulting from 

ion interactions inside and outside neurons, leading to the formation of action potentials that convey information between 

nerve cells [3]. 

The brain processes information through intricate networks of neurons that communicate via electrical and chemical signals. 

Mathematical modeling provides frameworks to simplify and interpret these biological processes, enhancing our 

understanding of both normal and pathological brain functions [4]. Additionally, it contributes to the development of 

effective therapeutic strategies for neurological disorders by offering simulation methods to test new hypotheses and assess 

how different treatments influence neural activity [5]. 

A key aspect of neural communication is the transmission of neural signals, characterized by changes in electrical potential 

across neuronal membranes driven by the movement of ions such as sodium, potassium, calcium, and chloride [6]. 

Mathematical representations of these processes frequently employ differential equations that describe how electrical 

signals evolve over time and space [7]. These equations can be highly complex, depending on factors such as ionic 

composition and the surrounding neuronal environment, and they offer insights into how these factors interact and influence 

neuronal electrical activity [8]. Mathematical models are also essential for understanding the dynamic properties of neurons. 

For instance, the Hodgkin-Huxley model describes neuronal behavior and responses to stimuli, illustrating the influence of 

various ions on electrical impulses [9]. This model, along with others, has significantly advanced the understanding of 

neural dynamics and their implications for neurological disorders [10]. Beyond neuroscience, mathematical modeling 

extends to other biological systems, including the cardiac system. The heart, a vital organ, operates through complex 

electrical signaling mechanisms that regulate its rhythmic contractions [11]. Differential equations describe how these 

signals propagate through cardiac tissue, facilitating the understanding of heart function and the development of therapeutic 

strategies for cardiac disorders [12]. In conclusion, mathematical modeling, particularly through differential equations, 

plays a pivotal role in both neuroscience and cardiology. It bridges mathematics and biology, enabling a deeper 

understanding of complex biological mechanisms and contributing to advancements in medicine and scientific research 

[13]. The integration of mathematical models into these fields has profound implications for both research and clinical 

practice, offering tools to predict system behavior, develop targeted therapies, and enhance our comprehension of biological 

systems [14]. 

2.   LITERATURE SURVEY IN ELECTRICAL SIGNALS IN NEURAL CELLS 

Electrical signals play a crucial role in regulating neural cell functions, facilitating the transmission of information and the 

coordination of vital processes within the nervous system. These signals are generated by the movement of ions across 

cellular membranes, leading to changes in electrical potential. The use of differential equations, whether linear or nonlinear, 

homogeneous or nonhomogeneous, provides a fundamental mathematical framework for analyzing and understanding these 

dynamics [15, 16]. In neural cells, the generation of electrical signals is attributed to variations in membrane potential, 

primarily driven by the movement of key ions such as sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), and chloride (Cl⁻) 

across the cell membrane. The application of differential equations enables researchers to model the propagation of these 

signals and their responses to external stimuli. One of the most influential models in this context is the Hodgkin-Huxley 

model, which describes how neurons react to stimuli by analyzing the role of different ions in modulating electrical potential 

[17, 18]. 

Furthermore, differential equations are essential for elucidating the mechanisms of information transmission within neural 

networks. The FitzHugh-Nagumo model, for instance, serves as a simplified yet powerful tool for simulating neural signal 

behavior and interactions, providing insights into critical processes such as excitation and inhibition. Nonlinear equations 

are particularly significant in capturing the dynamic patterns exhibited by neurons in response to external stimuli, including 
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pharmacological agents and environmental changes [19, 20]. The use of differential equations in neuroscience extends 

beyond theoretical analysis; it also contributes to practical applications in biomedical engineering and medical treatments. 

By leveraging mathematical models, researchers can develop innovative therapeutic strategies and improve medical 

technologies, including implantable neural devices that enhance neural network functionality [19- 22]. This literature survey 

underscores the vital role of mathematical modeling in neuroscience, particularly through the application of differential 

equations in studying the electrical behavior of neural cells. The integration of mathematical frameworks with biological 

systems offers valuable insights into neural dynamics and significantly advances medical research and clinical applications. 

These models not only deepen our understanding of neural processes but also pave the way for novel therapeutic 

interventions and technological innovations in neuroscience [15-22]. 

3.   BACKGROUND CONCEPTS 

Electrical signals driven by the movement of ions such as sodium and potassium are fundamental to both neural 

communication and cardiac function. In neurons, these signals generate action potentials that facilitate the transmission of 

information within the nervous system [23, 24], while in the cardiac system, pacemaker cells regulate rhythmic contractions 

to ensure proper heart function [16, 25, 26]. The study of these processes relies on differential equations, which provide a 

mathematical framework for understanding bioelectrical mechanisms. One of the most widely recognized models describing 

neuronal activity is the Hodgkin-Huxley model, which characterizes the propagation of action potentials in neural cells 

through the following equation: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼ext − (𝐼Na + 𝐼K + 𝐼L) 

Where  represents membrane capacitance,  is the membrane potential and  denote the conductance's of sodium, potassium, 

and leak channels, respectively and  are the reversal potentials for the respective ions, and  represents the external current 

input [27, 28]. To simplify the complex behavior of neural activity, the FitzHugh-Nagumo model provides a reduced two-

variable representation, where the first variable represents the membrane potential, while the second variable describes the 

recovery process that regulates neuronal response to external stimuli [26- 30]. 

In cardiology, mathematical modeling, such as the Luo-Rudy model, is employed to simulate cardiac action potentials, 

aiding in the prediction of heart rhythms and the development of treatments for arrhythmias [31, 32]. These models describe 

ion channel dynamics and the electrical activity of cardiac cells, contributing to the refinement of medical interventions and 

technologies. The integration of mathematical models in neuroscience and cardiology bridges the gap between biology and 

mathematics, enhancing the understanding of neurophysiology and cardiac electrophysiology. Such models have played a 

pivotal role in technological advancements, including neural prosthetics and pacemakers, which improve patient outcomes 

and optimize medical interventions [33]. 

4.   HODGKIN-HUXLEY EQUATION: MATHEMATICAL FORMULATION OF NEURAL 

SYSTEMS 

The derivation of the Hodgkin-Huxley equation starts from Ohm’s law, where the electric current is equal to the product of 

conductance and the voltage difference between the membrane and the equilibrium potential for each ion [32]. The ionic 

current for each ion channel, such as sodium and potassium, is given by the following relations: 

 The sodium current is equal to the product of sodium conductance and the voltage difference between the membrane and 

the sodium equilibrium potential [33]: 

𝐼Na = 𝑔Na𝑚3ℎ(𝑉 − 𝐸Na) 

The potassium current is equal to the product of potassium conductance and the voltage difference between the membrane 

and the potassium equilibrium potential: 

𝐼k = 𝑔k(𝑉 − 𝐸k) 

The leakage current is equal to the product of leakage conductance and the voltage difference between the membrane and 

the leakage equilibrium potential: 
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𝐼L = 𝑔L(𝑉 − 𝐸L) 

The total current resulting from all channels is the sum of these ionic currents [34]: 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼Na + 𝐼k + 𝐼L 

Then, the change in membrane potential over time is expressed through a differential equation that relates the membrane 

capacitance to the sum of ionic currents along with the external current: 

                              

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −𝐼𝑡𝑜𝑡𝑎𝑙 + 𝐼ext 

Substituting the previous expressions for the currents, we obtain the final equation: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −(𝑔Na𝑚3ℎ(𝑉 − 𝐸Na) + 𝑔k(𝑉 − 𝐸k) + 𝑔L(𝑉 − 𝐸L))+ 𝐼ext 

5.   RESULTS 

5.1. HODGKIN-HUXLEY EQUATIONS WITH MODIFICATIONS 

The Hodgkin-Huxley model is a fundamental mathematical framework that describes the electrical activity of neurons by 

modeling the flow of ionic currents across the cell membrane. This model is based on the interaction of different ion 

channels that regulate the membrane potential through the movement of sodium, potassium, and leak currents. The original 

Hodgkin-Huxley equation represents the change in membrane potential over time as influenced by these ion channels and 

external input. The general equation is expressed as 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −(𝐼Na + 𝐼k + 𝐼L) + 𝐼ext 

Where the sodium current is given by the equation 

𝐼Na = 𝑔Na𝑚3ℎ(𝑉 − 𝐸Na) 

Which represents the flow of sodium ions through voltage-gated sodium channels. The conductance of these channels is 

regulated by the activation variable and the inactivation variable, both of which depend on the membrane potential. The 

potassium current is given by 

                                                                                 𝐼𝐾 = 𝑔K𝑛4(𝑉 − 𝐸K) 

Where represents the gating variable for potassium channels, and its fourth power indicates the cooperative opening of 

multiple subunits before the channel can conduct current. The potassium current is crucial for repolarizing the membrane 

potential after an action potential. The leak current is described by 

𝐼L = 𝑔L(𝑉 − 𝐸L) 

Which accounts for the passive flow of ions through non-gated channels that contribute to the resting membrane potential. 

The sum of these currents determines how the membrane potential evolves over time in response to external stimuli. 

To improve the realism of the Hodgkin-Huxley model, researchers have introduced modifications that incorporate 

additional ionic currents, active transport mechanisms, and stochastic fluctuations. The modified Hodgkin-Huxley equation 

includes terms for calcium currents, sodium-potassium pump activity, synaptic currents, and random fluctuations that 

account for noise. The modified equation is given by: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼ext − (𝐼Na + 𝐼K + 𝐼L + 𝐼Ca + 𝐼NaK + 𝐼syn) + 𝐼noise 

Where the calcium current is represented as: 

𝐼Ca = 𝑔Ca𝑠𝑝(𝑉 − 𝐸Ca) 
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Which accounts for the role of calcium ions in neuronal excitability and synaptic plasticity. The conductance and gating 

variable determine the contribution of calcium to the overall membrane potential. The sodium-potassium pump current is 

given by: 

𝐼NaK =
𝑃max

1 + 𝑒([𝑁𝑎+]ln−[𝑁𝑎+]out)
 

Which models the active transport of sodium and potassium ions against their concentration gradients to maintain ionic 

homeostasis. This process consumes ATP and plays a vital role in restoring the resting membrane potential after neuronal 

activity. The synaptic current is represented by 

𝐼syn = 𝑔syn𝑠(𝑉 − 𝐸syn) 

Which describes the effect of synaptic inputs from other neurons on the postsynaptic membrane potential. The variable 

represents the synaptic gating function, which depends on neurotransmitter release and receptor activation. Stochastic noise 

is introduced through 

𝐼noise = 𝜉(𝑡) 

Which accounts for the random fluctuations in ion channel activity, synaptic inputs, and other biological noise sources that 

influence neural dynamics. The Inclusion of noise makes the model more realistic by capturing the variability observed in 

neuronal firing patterns. 

The original and modified Hodgkin-Huxley models differ significantly in their representation of neural excitability. The 

original model primarily focuses on the sodium, potassium, and leak currents, which are essential for generating action 

potentials. However, the modified model extends this framework by incorporating additional ionic mechanisms that play 

crucial roles in neuronal signaling and homeostasis. The following figure illustrates a comparison between the two models 

by showing the variations in sodium, potassium, leak, and total currents, as depicted in Fig.1. 

 

Fig. (1): The original and modified models. 

In the original Hodgkin-Huxley model, illustrated in the first figure, the three primary currents (sodium current 𝐼Na, 

potassium current 𝐼k, and leak current 𝐼L) demonstrate how ionic changes regulate the dynamics of the neuronal membrane. 

The fundamental differential equation:  
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𝐶𝑚

𝑑𝑉

𝑑𝑡
= −(𝐼Na + 𝐼k + 𝐼L) + 𝐼ext 

 

Fig. (2): The original hodgkin-huxley between the current and time. 

The relationship between the membrane capacitance (𝐶𝑚), the change in membrane potential (
𝑑𝑉

𝑑𝑡
), and the various ionic 

currents. In this figure, sodium current is observed as a rapid and sharp change during depolarization, caused by the opening 

of sodium channels, while potassium current appears more gradually during repolarization sodium channels close and 

potassium channels open. The leak current is relatively small and constant, representing the passive flow of non-specific 

ions through the membrane. 

 

 

Fig. (3): The modified hodgkin-huxley Between the current and times. 

In the second figure, the enhanced Hodgkin-Huxley model incorporates additional currents to better represent biological 

processes. The differential equation is modified to: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼ext − (𝐼Na + 𝐼K + 𝐼L + 𝐼Ca + 𝐼NaK + 𝐼syn) + 𝐼noise 
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Introducing calcium current (𝐼Ca), which plays a key role in signaling and regulating neuronal activity. The pump current 

(𝐼NaK) reflects the effect of the sodium-potassium 34Chapter three results pump in restoring ionic concentrations, 

contributing to the stability of the membrane potential. The synaptic current (𝐼syn) represents the influence of neighboring 

neurons, a vital element for understanding synaptic interactions. Stochastic noise (𝐼noise) adds realism by simulating natural, 

irregular variations in neuronal activity. When comparing the two models, the original model reflects a simpler and idealized 

response to the dynamics of the neuronal membrane, while the enhanced model captures a greater complexity that mirrors 

the real biological environment. The enhanced model demonstrates how the additional ionic currents interact with the 

primary sodium, potassium, and leak currents, producing a more intricate and realistic pattern of membrane dynamics. 

These additions highlight the importance of incorporating advanced physiological processes into mathematical models for 

better analysis of biological phenomena. 

Table (1): Comparison of currents original and modified models. 

 

 

Fig. (4): difference between original and modified modelshodgkin-huxley currents. 

The first table and the accompanying figures, a comparative analysis is presented between the original and modified 

Hodgkin-Huxley models. The table shows the peak and trough values of the ionic currents in both models. The sodium 

current in the modified model exhibits a slight increase in its negative peak (-1500 µA/cm² compared to -1400 µA/cm²), 

indicating a stronger response during depolarization. For the potassium current, there is no significant difference between 

the two models (30 µA/cm² for the peak value and -5 µA/cm² for the trough value), suggesting that the modifications did 

not substantially affect potassium channels. In contrast, the leak current in the modified model shows a significant increase, 

with a peak value of 15 µA/cm² compared to 2 µA/cm² in the original model, reflecting the additional influence of the 

modifications on membrane dynamics. 
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In the second figure, the temporal differences between the primary ionic currents (sodium, potassium, and leak) in the two 

models are illustrated. The sodium current shows a greater variation compared to potassium and leak currents, highlighting 

its sensitivity to the modifications. The difference in the leak current remains consistently noticeable over time, reflecting 

the role of the enhanced leak current in stabilizing the membrane potential in the modified model. This analysis indicates 

that the modifications in the enhanced model, such as the increased leak current and improved differential equat ions, 

enhance biological realism by providing a more accurate representation of neuronal membrane dynamics. These results 

highlight the importance of modifying original models to include more complex processes that reflect actual biophysical 

physiology, enabling a more precise and comprehensive study of neuronal signaling dynamics. 

6.   CONCLUSION 

The Hodgkin-Huxley model is a fundamental mathematical framework for understanding the electrical activity of neurons, 

describing the influence of ionic currents on membrane potential. The original model includes sodium, potassium, and leak 

currents, which play a key role in generating and resetting action potentials. However, research has shown that this model 

can be improved by incorporating additional currents such as calcium currents, the sodium-potassium pump current, 

synaptic currents, and stochastic noise, making it more consistent with real biological environments. A comparison between 

the two models demonstrates that these modifications enhance the accuracy of neuronal activity representation, with 

increased sodium current intensity during depolarization and a significant rise in leak current, reflecting the impact of the 

added physiological processes. These findings highlight the importance of developing neural models to achieve higher 

accuracy in representing neuronal behavior, contributing to a better scientific understanding of neural functions and 

applications in fields such as neuroscience and artificial intelligence. 
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